
The rates of 1,3-dipolar cycloaddition of 12–21 membered
ring crowned diphenyldiazomethanes with maleic anhydride
were ion-selectively decelerated by addition of alkali metal per-
chlorates on account of the diminished FMO interaction associ-
ated with the cation recognition.

Crown ethers possessing multiple bonds or reactive func-
tional groups are versatile building blocks for the construction
of novel supramolecular architectures capable of binding
cationic species with formation of well-defined host–guest
compounds.1 These designed compounds may also be very
interesting from the viewpoint of cation-recognized control of
reactions as well as the intriguing physicochemical properties.2

Despite the great potentialities, relatively little attention is
focused on reaction kinetics using these promising compounds
as a substrate.3 Our interest in the control of reactions by the
non-covalent weak interaction led us to investigate the effects
of cations on their intrinsic reactivities of functionalized crown
compounds.  We have therefore chosen a well-known 1,3-dipo-
lar cycloaddition of crowned diazoalkanes 1 with maleic anhy-
dride 3 as a model reaction in order to assess the effects of rec-
ognized cations on kinetic features as compared with a refer-
ence dimethoxy-substituted analogue 2. 

The reaction of 12–21 membered ring crowned diphenyl-
diazomethanes4 1a–d with maleic anhydride 3 proceeded
smoothly with decoloration of 1.  In 1H NMR measurement, it
was found that a representative reaction of 18-membered 1c

with an equimolar amount of anhydride 3 in acetonitrile-d3
almost quantitatively provides the corresponding cyclopropane
5c and 2-pyrazoline 4c’ (ca. 1:1 mixture) via facile nitrogen
extrusion and tautomerization of the primary dipolar adduct 1-
pyrazoline 4c, respectively (Scheme 1).5

Kinetic reactions were carried out at 30 °C in acetonitrile
under pseudo-first-order conditions using 20-equiv excess of 3
(20 mM) relative to 1 and 2 (1 mM) with or without added
metal perchlorates (5 mM).  The progress of reactions was
monitored with a UV spectrometer at λmax = 530 nm (ε = ca.
100) by following the disappearance of diazo-color of 1 and 2.
The second-order rate constants k2

0 for the absence of added
salts were collected along with the rate ratios, k2

M/k2
0, where

k2
M represent the observed rate constants for the presence of

salts (Table 1).  In the absence of metal salts, all diphenyldiazo-
methanes used provided the comparable rate constants ranging
from 2.1–2.2 × 10–1 M–1 s–1 except 1a (1.5 × 10–1 M–1 s–1) irre-
spective of bearing cyclic or non-cyclic substituents.  However,
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a survey of table shows that the added metal salts brought about
an appreciable rate-retardation depending on the combination of
crowned 1 and the metal ions, although the reference 2 essen-
tially remained unaffected.  A preliminary experiment on the
dependence of the k2

M on metal concentration revealed that the
saturation kinetics was satisfactorily performed even on 5 mM
salt for the significant complexation of 1b with Li+ and Na+, 1c
with Na+–Rb+, and 1d with Rb+ and Cs+ as represented for 1c
(Figure 1 and Table 1).  The leveling-off values of k2

M/k2
0 refer

to the complexation of almost all of the crowned diphenyldiazo-
methanes.  The negligible salt effects for 2 obviously rule out
the possible acceleration or deceleration by way of a sort of
metal coordination on the components 2 and/or 3.  Therefore,
the rate-decelerating salt effects for crowned 1 can be explained
by the cation recognition in light of the host–guest complexa-
tion of crown compounds. 

The plots of k2
M/k2

0 vs alkali metal ion radius more explic-
itly showed the cation recognized rate-retarding features for 1
as compared with the reference 2 (Figure 2).  The numerical
value of 1 for metal-free reactions was plotted on the ion radius
zero as abscissa.  Although 12-membered 1a underwent almost
a similar poor rate retardation at smaller sized Li+ (ion radius
0.60 Å) and Na+ (0.95 Å), 15-membered 1b notably dropped to
a distinct bottom at size-fitted Na+ and rose again in going to
Cs+.  The next larger 18-membered 1c exhibited the bottom at
the favorite K+ (1.33 Å) in conformity with the ion-in-the-hole
concepts.6 The largest 21-membered 1d provided the mono-
tonous horizontal line for the Na+ to Cs+ (1.40 Å).  This may be
due to the high flexibility of the macrocyclic ring, which would
enable 1d to wrap even the smaller Na+–Rb+ (1.69 Å). 

Considering that diazoalkanes are classified as one of the
typical HOMO controlled dipoles,7 the reactivity of 1 and 2
with electron deficient maleic anhydride 3 is controlled by the
dominant HOMO (diazoalkanes)–LUMO (anhydride) interac-
tion as well as their orbital coefficients.8 The reaction would be
accelerated or decelerated by the substitution of electron-releas-
ing or -withdrawing group on the 1,3-dipole, respectively.9 In
fact, substituted diphenyldiazomethanes are known to provide

fairly negative Hammett ρ values in the 1,3-dipolar reactions
with tetracyanoethylene (ρ = –2.67)10a and chloranil (–1.67).10b

In line with this, the rate-retarding effects of alkali metal cations
on 1,3-dipolar cycloaddition of 1 can be explained by the elec-
tron-withdrawing electrostatic influence of the bound metal ions,
which tends to withdraw electron density from the aromatic ring
and lowers the energy of the HOMO of 1,3-dipole 1. 

Such a reduction of HOMO level was confirmed by a
cyclic voltammetry.  The oxidation potential Ep

ox of 18-mem-
bered 1c (1 mM) in acetonitrile was shifted by addition of metal
ions (5 mM) and the potential plot was quite similar to the
k2

M/k2
0 rate profile (Figure 2) as indicated by the excellent

regression equation;11

In conclusion, the 1,3-dipolar cycloaddition of 12–21
membered ring crowned diphenyldiazomethanes 1a–d with
maleic anhydride 3 was decelerated by selective cation binding
of the crown rings.  These kinetic features were interpreted in
terms of the reduced FMO interaction owing to the lowered
HOMO of 1 by cation recognition.
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